字:
关灯 护眼
快眼看书 / 网站搭建:从入门到入土 / 007 数据库介绍

007 数据库介绍

章节出错了,点此刷新,刷新后小编会在两分钟内校正章节内容,请稍后再试。

  数据库是“按照数据结构来组织、存储和管理数据的仓库”。是一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。
  数据库是存放数据的仓库。它的存储空间很大,可以存放百万条、千万条、上亿条数据。但是数据库并不是随意地将数据进行存放,是有一定的规则的,否则查询的效率会很低。当今世界是一个充满着数据的互联网世界,充斥着大量的数据。即这个互联网世界就是数据世界。数据的来源有很多,比如出行记录、消费记录、浏览的网页、发送的消息等等。除了文本类型的数据,图像、音乐、声音都是数据。
  数据库是一个按数据结构来存储和管理数据的计算机软件系统。数据库的概念实际包括两层意思:
  (1)数据库是一个实体,它是能够合理保管数据的“仓库”,用户在该“仓库”中存放要管理的事务数据,“数据”和“库”两个概念结合成为数据库。
  (2)数据库是数据管理的新方法和技术,它能更合适的组织数据、更方便的维护数据、更严密的控制数据和更有效的利用数据。
  数据库作为最重要的基础软件,是确保计算机系统稳定运行的基石。
  在数据库的发展历史上,数据库先后经历了层次数据库、网状数据库和关系数据库等各个阶段的发展,数据库技术在各个方面的快速的发展。特别是关系型数据库已经成为目前数据库产品中最重要的一员,80年代以来,几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,即使一些非关系数据库产品也几乎都有支持关系数据库的接口。这主要是传统的关系型数据库可以比较好的解决管理和存储关系型数据的问题。随着云计算的发展和大数据时代的到来,关系型数据库越来越无法满足需要,这主要是由于越来越多的半关系型和非关系型数据需要用数据库进行存储管理,以此同时,分布式技术等新技术的出现也对数据库的技术提出了新的要求,于是越来越多的非关系型数据库就开始出现,这类数据库与传统的关系型数据库在设计和数据结构有了很大的不同,它们更强调数据库数据的高并发读写和存储大数据,这类数据库一般被称为NoSQL(NotonlySQL)数据库。而传统的关系型数据库在一些传统领域依然保持了强大的生命力。
  关系型数据库,存储的格式可以直观地反映实体间的关系。关系型数据库和常见的表格比较相似,关系型数据库中表与表之间是有很多复杂的关联关系的。常见的关系型数据库有Mysql,SqlServer等。在轻量或者小型的应用中,使用不同的关系型数据库对系统的性能影响不大,但是在构建大型应用时,则需要根据应用的业务需求和性能需求,选择合适的关系型数据库。
  虽然关系型数据库有很多,但是大多数都遵循SQL(结构化查询语言,StructuredQueryLanguage)标准。常见的操作有查询,新增,更新,删除,求和,排序等。
  查询语句:SELECTparamFROMtableWHEREcondition该语句可以理解为从table中查询出满足condition条件的字段param。
  新增语句:INSERTINTOtable(param1,param2,param3)VALUES(value1,value2,value3)该语句可以理解为向table中的param1,param2,param3字段中分别插入value1,value2,value3。
  更新语句:UPDATEtableSETparam=new_valueWHEREcondition该语句可以理解为将满足condition条件的字段param更新为new_value值。
  删除语句:DELETEFROMtableWHEREcondition该语句可以理解为将满足condition条件的数据全部删除。
  去重查询:SELECTDISTINCTparamFROMtableWHEREcondition该语句可以理解为从表table中查询出满足条件condition的字段param,但是param中重复的值只能出现一次。
  排序查询:SELECTparamFROMtableWHEREconditionORDERBYparam1该语句可以理解为从表table中查询出满足condition条件的param,并且要按照param1升序的顺序进行排序。
  总体来说,数据库的SELECT,INSERT,UPDATE,DELETE对应了我们常用的增删改查四种操作。
  关系型数据库对于结构化数据的处理更合适,如学生成绩、地址等,这样的数据一般情况下需要使用结构化的查询,例如join,这样的情况下,关系型数据库就会比NoSQL数据库性能更优,而且精确度更高。由于结构化数据的规模不算太大,数据规模的增长通常也是可预期的,所以针对结构化数据使用关系型数据库更好。关系型数据库十分注意数据操作的事务性、一致性,如果对这方面的要求关系型数据库无疑可以很好的满足。
  随着近些年技术方向的不断拓展,大量的NoSql数据库如MongoDB、Redis、Memcache出于简化数据库结构、避免冗余、影响性能的表连接、摒弃复杂分布式的目的被设计。
  指的是分布式的、非关系型的、不保证遵循ACID原则的数据存储系统。NoSQL数据库技术与CAP理论、一致性哈希算法有密切关系。所谓CAP理论,简单来说就是一个分布式系统不可能满足可用性、一致性与分区容错性这三个要求,一次性满足两种要求是该系统的上限。而一致性哈希算法则指的是NoSQL数据库在应用过程中,为满足工作需求而在通常情况下产生的一种数据算法,该算法能有效解决工作方面的诸多问题但也存在弊端,即工作完成质量会随着节点的变化而产生波动,当节点过多时,相关工作结果就无法那么准确。这一问题使整个系统的工作效率受到影响,导致整个数据库系统的数据乱码与出错率大大提高,甚至会出现数据节点的内容迁移,产生错误的代码信息。但尽管如此,NoSQL数据库技术还是具有非常明显的应用优势,如数据库结构相对简单,在大数据量下的读写性能好;能满足随时存储自定义数据格式需求,非常适用于大数据处理工作。
  NoSQL数据库适合追求速度和可扩展性、业务多变的应用场景。对于非结构化数据的处理更合适,如文章、评论,这些数据如全文搜索、机器学习通常只用于模糊处理,并不需要像结构化数据一样,进行精确查询,而且这类数据的数据规模往往是海量的,数据规模的增长往往也是不可能预期的,而NoSQL数据库的扩展能力几乎也是无限的,所以NoSQL数据库可以很好的满足这一类数据的存储。NoSQL数据库利用key-value可以大量的获取大量的非结构化数据,并且数据的获取效率很高,但用它查询结构化数据效果就比较差。
  目前NoSQL数据库仍然没有一个统一的标准,它现在有四种大的分类:
  (1)键值对存储(key-value):代表软件Redis,它的优点能够进行数据的快速查询,而缺点是需要存储数据之间的关系。
  (2)列存储:代表软件Hbase,它的优点是对数据能快速查询,数据存储的扩展性强。而缺点是数据库的功能有局限性。
  (3)文档数据库存储:代表软件MongoDB,它的优点是对数据结构要求不特别的严格。而缺点是查询性的性能不好,同时缺少一种统一查询语言。
  (4)图形数据库存储:代表软件InfoGrid,它的优点可以方便的利用图结构相关算法进行计算。而缺点是要想得到结果必须进行整个图的计算,而且遇到不适合的数据模型时,图形数据库很难使用。
  数据库管理系统是为管理数据库而设计的电脑软件系统,一般具有存储、截取、安全保障、备份等基础功能。数据库管理系统可以依据它所支持的数据库模型来作分类,例如关系式、XML;或依据所支持的计算机类型来作分类,例如服务器群集、移动电话;或依据所用查询语言来作分类,例如SQL、XQuery;或依据性能冲量重点来作分类,例如最大规模、最高运行速度;亦或其他的分类方式。不论使用哪种分类方式,一些DBMS能够跨类别,例如,同时支持多种查询语言。[1]
  数据库管理系统是数据库系统的核心组成部分,主要完成对数据库的操作与管理功能,实现数据库对象的创建、数据库存储数据的查询、添加、修改与删除操作和数据库的用户管理、权限管理等。它的安全直接关系到整个数据库系统的安全,其防护手段主要有:
  (1)使用正版数据库管理系统并及时安装相关补丁。
  (2)做好用户账户管理,禁用默认超级管理员账户或者为超级管理员账户设置复杂密码;为应用程序分别分配专用账户进行访问;设置用户登录时间及登录失败次数限制,防止暴力破解用户密码。
  (3)分配用户访问权限时,坚持最小权限分配原则,并限制用户只能访问特定数据库,不能同时访问其他数据库。
  (4)修改数据库默认访问端口,使用防火墙屏蔽掉对外开放的其他端口,禁止一切外部的端口探测行为。
  (5)对数据库内存储的重要数据、敏感数据进行加密存储,防止数据库备份或数据文件被盗而造成数据泄露。
  (6)设置好数据库的备份策略,保证数据库被破坏后能迅速恢复。
  (7)对数据库内的系统存储过程进行合理管理,禁用掉不必要的存储过程,防止利用存储过程进行数据库探测与攻击。
  (8)启用数据库审核功能,对数据库进行全面的事件跟踪和日志记录。
热门推荐